Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Am J Med Genet C Semin Med Genet ; : e32087, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591859

ABSTRACT

Marfanoid habitus and intellectual disability (MHID) co-occur in multiple neurodevelopmental disorders (NDD). Among those, Lujan-Fryns, an X-linked genetic disorder associated with variants in MED12 was the first such syndrome identified. Accurate molecular diagnosis for these MHID syndromes remains a challenge due to significant clinical and genetic heterogeneity. We present a case report of a 20-year-old male patient with MHID and severe social anxiety. A comprehensive clinical evaluation, including morphotype assessment, cognitive, and psychometric and genetic testing, was conducted to provide a detailed understanding of the patient's complex clinical presentation. Psychometric assessments revealed severe social anxiety and various cognitive and emotional challenges. Despite some autism-like symptoms, the patient's clinical presentation was more aligned with mild intellectual disability. Exome sequencing was inconclusive but identified a heterozygous de novo missense variant in the PCDHGA5 gene. This gene is not known in human pathology yet, but we also report a second patient with a syndromic neurodevelopmental disorder and a rare de novo variant which leads us to propose this as a candidate gene. Our findings emphasize the importance of multidisciplinary approach in the diagnosis and management of MHID. This case report underscores the need for objective clinical evaluations and standardized tools to better understand the complex clinical profiles of patients with NDDs. The identification of novel PCDHGA5 gene variants adds this gene's candidacy to the genetic landscape of MHID-NDD, warranting further investigation to determine its potential contribution.

2.
Genet Med ; 26(6): 101119, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38465576

ABSTRACT

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.

3.
SAGE Open Med Case Rep ; 12: 2050313X241231386, 2024.
Article in English | MEDLINE | ID: mdl-38333515

ABSTRACT

We present the cases of two brothers with ichthyosis, born to consanguineous parents, with the eldest having extracutaneous manifestations in the form of microphthalmia and corneal opacities causing complete blindness. Initially, we were faced with the question of whether the phenotype in this family was due to the effects of a single pleiotropic, presumably autosomal recessive gene manifesting as a syndromic form of ichthyosis, or whether there were multiple causal genes, and the ichthyosis was non-syndromic. Ultimately, clinical follow-up of the family, combined with research-based exome sequencing established a diagnosis of NIPAL4 autosomal recessive congenital ichthyosis in both brothers, but the ocular abnormalities causing blindness in the older brother were due to coexisting autosomal recessively inherited loss of function mutations in peroxidasin, the latter finding also seen in a sister unaffected by ichthyosis.

4.
Stem Cell Res ; 76: 103344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364506

ABSTRACT

The identification of neurodevelopmental defects in a patient harboring a heterozygous de novo missense variant (NM_006561.4, c.1517G > A, p.Arg506His) within the CELF2 gene. Here, we describe the establishment of a patient-derived induced pluripotent stem cell (iPSC) line, alongside an isogenic gene-corrected iPSC line, achieved through CRISPR/Cas9 genome editing. These lines exhibit the expression of pluripotency markers, demonstrate differentiation potential into all three germ layers, and maintain a normal karyotype. These iPSC lines serve as valuable tools for investigating the consequences of CELF2 related neurodevelopmental disorders.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Gene Editing , Mutation, Missense , Cell Differentiation , CRISPR-Cas Systems/genetics , CELF Proteins/genetics , CELF Proteins/metabolism , Nerve Tissue Proteins/metabolism
5.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38325380

ABSTRACT

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Subject(s)
Hyperparathyroidism , Intellectual Disability , Neurodevelopmental Disorders , Male , Female , Animals , Humans , Intellectual Disability/pathology , Zebrafish/genetics , Mutation, Missense/genetics , Transcription Factors/genetics , Phenotype , Neurodevelopmental Disorders/genetics
6.
Am J Surg ; 229: 203-204, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168603
7.
Eur J Hum Genet ; 32(3): 342-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177406

ABSTRACT

DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.


Subject(s)
Muscular Diseases , Muscular Dystrophies , Humans , Dystroglycans/genetics , Dystroglycans/metabolism , Haploinsufficiency , Muscular Dystrophies/genetics , Muscle, Skeletal/pathology , Muscular Diseases/pathology
8.
Am J Med Genet A ; 194(3): e63466, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37949664

ABSTRACT

Activating variants in the PIK3CA gene cause a heterogeneous spectrum of disorders that involve congenital or early-onset segmental/focal overgrowth, now referred to as PIK3CA-related overgrowth spectrum (PROS). Historically, the clinical diagnoses of patients with PROS included a range of distinct syndromes, including CLOVES syndrome, dysplastic megalencephaly, hemimegalencephaly, focal cortical dysplasia, Klippel-Trenaunay syndrome, CLAPO syndrome, fibroadipose hyperplasia or overgrowth, hemihyperplasia multiple lipomatosis, and megalencephaly capillary malformation-polymicrogyria (MCAP) syndrome. MCAP is a sporadic overgrowth disorder that exhibits core features of progressive megalencephaly, vascular malformations, distal limb malformations, cortical brain malformations, and connective tissue dysplasia. In 2012, our research group contributed to the identification of predominantly mosaic, gain-of-function variants in PIK3CA as an underlying genetic cause of the syndrome. Mosaic variants are technically more difficult to detect and require implementation of more sensitive sequencing technologies and less stringent variant calling algorithms. In this study, we demonstrated the utility of deep sequencing using the Illumina TruSight Oncology 500 (TSO500) sequencing panel in identifying variants with low allele fractions in a series of patients with PROS and suspected mosaicism: pathogenic, mosaic PIK3CA variants were identified in all 13 individuals, including 6 positive controls. This study highlights the importance of screening for low-level mosaic variants in PROS patients. The use of targeted panels with deep sequencing in clinical genetic testing laboratories would improve diagnostic yield and accuracy within this patient population.


Subject(s)
Abnormalities, Multiple , Megalencephaly , Musculoskeletal Abnormalities , Skin Diseases, Vascular , Telangiectasis/congenital , Vascular Malformations , Humans , Mutation , Musculoskeletal Abnormalities/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Vascular Malformations/diagnosis , Vascular Malformations/genetics , High-Throughput Nucleotide Sequencing
9.
Brain ; 147(1): 311-324, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37713627

ABSTRACT

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Subject(s)
Dystonia , Epilepsy , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Animals , Humans , Microcephaly/genetics , Intellectual Disability/genetics , Vesicular Transport Proteins/genetics , Neurodevelopmental Disorders/genetics , Epilepsy/genetics
10.
Genet Med ; 25(9): 100897, 2023 09.
Article in English | MEDLINE | ID: mdl-37191094

ABSTRACT

PURPOSE: Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)-associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype. METHODS: This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy. RESULTS: All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family. CONCLUSION: Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings.


Subject(s)
Acute Febrile Encephalopathy , Brain Diseases , Leukoencephalitis, Acute Hemorrhagic , Child , Humans , Leukoencephalitis, Acute Hemorrhagic/diagnosis , Leukoencephalitis, Acute Hemorrhagic/genetics , Inflammasomes , Brain Diseases/genetics , Transcription Factors , Ribonucleases , Carrier Proteins
11.
HGG Adv ; 4(3): 100198, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37181331

ABSTRACT

GATA zinc finger domain containing 2A (GATAD2A) is a subunit of the nucleosome remodeling and deacetylase (NuRD) complex. NuRD is known to regulate gene expression during neural development and other processes. The NuRD complex modulates chromatin status through histone deacetylation and ATP-dependent chromatin remodeling activities. Several neurodevelopmental disorders (NDDs) have been previously linked to variants in other components of NuRD's chromatin remodeling subcomplex (NuRDopathies). We identified five individuals with features of an NDD that possessed de novo autosomal dominant variants in GATAD2A. Core features in affected individuals include global developmental delay, structural brain defects, and craniofacial dysmorphology. These GATAD2A variants are predicted to affect protein dosage and/or interactions with other NuRD chromatin remodeling subunits. We provide evidence that a GATAD2A missense variant disrupts interactions of GATAD2A with CHD3, CHD4, and CHD5. Our findings expand the list of NuRDopathies and provide evidence that GATAD2A variants are the genetic basis of a previously uncharacterized developmental disorder.


Subject(s)
Mi-2 Nucleosome Remodeling and Deacetylase Complex , Neurodevelopmental Disorders , Repressor Proteins , Humans , DNA Helicases/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Nerve Tissue Proteins , Neurodevelopmental Disorders/genetics , Nucleosomes , Repressor Proteins/genetics
12.
Am J Med Genet C Semin Med Genet ; 193(2): 183-187, 2023 06.
Article in English | MEDLINE | ID: mdl-37212526

ABSTRACT

GNB1-related disorder is characterized by intellectual disability, abnormal tone, and other variable neurologic and systemic features. GNB1 encodes the ß1 subunit of the heterotrimeric G-protein, a complex with a key role in signal transduction. Consistent with its particularly high expression in rod photoreceptors, Gß1 forms a subunit of retinal transducin (Gαtß1γ1 ), which mediates phototransduction. In mice, GNB1 haploinsufficiency has been associated with retinal dystrophy. In humans, however, although vision and eye movement abnormalities are common in individuals with GNB1-related disorder, rod-cone dystrophy is not yet an established feature of this condition. We expand the phenotype of GNB1-related disorder with the first confirmed report of rod-cone dystrophy in an affected individual, and contribute to a further understanding of the natural history of this condition in a mildly affected 45-year-old adult.


Subject(s)
Cone-Rod Dystrophies , GTP-Binding Protein beta Subunits , Retinitis Pigmentosa , Humans , Adult , Mice , Animals , Middle Aged , Cone-Rod Dystrophies/genetics , Retinitis Pigmentosa/genetics , Retina , Retinal Rod Photoreceptor Cells , Phenotype , GTP-Binding Protein beta Subunits/genetics
13.
Bone Rep ; 18: 101663, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36950254

ABSTRACT

Osteochondritis dissecans (OCD) is a disease of the joints characterized by idiopathic focal subchondral lesions. Aggrecan, a proteoglycan encoded by the ACAN gene, is important for cartilage structure and function. We describe the clinical evolution of a patient with short stature, multi-focal OCD, and subchondral osteopenia that appeared linked to a novel pathogenic ACAN variant. A multi-disciplinary approach including medical (bisphosphonate) therapy, surgical intervention and rehabilitation were successful in restoring wellness and physical function.

14.
HGG Adv ; 4(1): 100157, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36408368

ABSTRACT

WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Drosophila Proteins , Language Development Disorders , Neurodevelopmental Disorders , Animals , Humans , Autism Spectrum Disorder/genetics , Drosophila melanogaster/genetics , Neurodevelopmental Disorders/genetics , Cluster Analysis , Chromatin , Intracellular Signaling Peptides and Proteins/genetics , Histone-Lysine N-Methyltransferase/genetics , Drosophila Proteins/genetics
15.
Am J Hum Genet ; 109(11): 1947-1959, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332610

ABSTRACT

The past decade has witnessed a rapid evolution in rare disease (RD) research, fueled by the availability of genome-wide (exome and genome) sequencing. In 2011, as this transformative technology was introduced to the research community, the Care4Rare Canada Consortium was launched: initially as FORGE, followed by Care4Rare, and Care4Rare SOLVE. Over what amounted to three eras of diagnosis and discovery, the Care4Rare Consortium used exome sequencing and, more recently, genome and other 'omic technologies to identify the molecular cause of unsolved RDs. We achieved a diagnostic yield of 34% (623/1,806 of participating families), including the discovery of deleterious variants in 121 genes not previously associated with disease, and we continue to study candidate variants in novel genes for 145 families. The Consortium has made significant contributions to RD research, including development of platforms for data collection and sharing and instigating a Canadian network to catalyze functional characterization research of novel genes. The Consortium was instrumental to implementing genome-wide sequencing as a publicly funded test for RD diagnosis in Canada. Despite the successes of the past decade, the challenge of solving all RDs remains enormous, and the work is far from over. We must leverage clinical and 'omic data for secondary use, develop tools and policies to support safe data sharing, continue to explore the utility of new and emerging technologies, and optimize research protocols to delineate complex disease mechanisms. Successful approaches in each of these realms is required to offer diagnostic clarity to all families with RDs.


Subject(s)
Exome , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Canada , Exome/genetics , Exome Sequencing , Genetic Association Studies
16.
G3 (Bethesda) ; 12(5)2022 05 06.
Article in English | MEDLINE | ID: mdl-35325113

ABSTRACT

Mutations in RNA-binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb, and neurological symptoms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription, and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. We show a developmental role for Hnrnpul1 in zebrafish, resulting in reduced body and fin growth and missing bones. Defects in craniofacial tendon growth and adult-onset caudal scoliosis are also seen. We demonstrate a role for Hnrnpul1 in alternative splicing and transcriptional regulation using RNA-sequencing, particularly of genes involved in translation, ubiquitination, and DNA damage. Given its cross-species conservation and role in splicing, it would not be surprising if it had a role in human development. Whole-exome sequencing detected a homozygous frameshift variant in HNRNPUL1 in 2 siblings with congenital limb malformations, which is a candidate gene for their limb malformations. Zebrafish Hnrnpul1 mutants suggest an important developmental role of hnRNPUL1 and provide motivation for exploring the potential conservation of ancient regulatory circuits involving hnRNPUL1 in human development.


Subject(s)
RNA Splicing , Zebrafish , Alternative Splicing , Animals , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA/metabolism , RNA Splicing/genetics , Zebrafish/genetics , Zebrafish/metabolism
17.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35108495

ABSTRACT

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Subject(s)
Neurodevelopmental Disorders , Peripheral Nervous System Diseases , Animals , Axons/metabolism , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules, Neuronal , Humans , Mice , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscle Spasticity/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Zebrafish/genetics , Zebrafish/metabolism
18.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Article in English | MEDLINE | ID: mdl-35146895

ABSTRACT

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Subject(s)
Epilepsy , Infant, Newborn, Diseases , Intellectual Disability , TRPM Cation Channels , Child , Developmental Disabilities/genetics , Humans , Infant, Newborn , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Mutation, Missense , TRPM Cation Channels/genetics , Exome Sequencing
19.
Genet Med ; 24(1): 100-108, 2022 01.
Article in English | MEDLINE | ID: mdl-34906465

ABSTRACT

PURPOSE: Matchmaking has emerged as a useful strategy for building evidence toward causality of novel disease genes in patients with undiagnosed rare diseases. The Matchmaker Exchange (MME) is a collaborative initiative that facilitates international data sharing for matchmaking purposes; however, data on user experience is limited. METHODS: Patients enrolled as part of the Finding of Rare Disease Genes in Canada (FORGE) and Care4Rare Canada research programs had their exome sequencing data reanalyzed by a multidisciplinary research team over a 2-year period. Compelling variants in genes not previously associated with a human phenotype were submitted through the MME node PhenomeCentral, and outcomes were collected. RESULTS: In this study, 194 novel candidate genes were submitted to the MME, resulting in 1514 matches, and 15% of the genes submitted resulted in collaborations. Most submissions resulted in at least 1 match, and most matches were with GeneMatcher (82%), where additional email exchange was required to evaluate the match because of the lack of phenotypic or inheritance information. CONCLUSION: Matchmaking through the MME is an effective way to investigate novel candidate genes; however, it is a labor-intensive process. Engagement from the community to contribute phenotypic, genotypic, and inheritance data will ensure that matchmaking continues to be a useful approach in the future.


Subject(s)
Databases, Genetic , Information Dissemination , Rare Diseases , Canada , Genetic Association Studies , Humans , Information Dissemination/methods , Phenotype , Rare Diseases/diagnosis , Rare Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...